Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Vaccines (Basel) ; 11(4)2023 Mar 31.
Article in English | MEDLINE | ID: covidwho-2306114

ABSTRACT

Antibody-dependent enhancement (ADE) can increase the rates and severity of infection with various viruses, including coronaviruses, such as MERS. Some in vitro studies on COVID-19 have suggested that prior immunization enhances SARS-CoV-2 infection, but preclinical and clinical studies have demonstrated the contrary. We studied a cohort of COVID-19 patients and a cohort of vaccinated individuals with a heterologous (Moderna/Pfizer) or homologous (Pfizer/Pfizer) vaccination scheme. The dependence on IgG or IgA of ADE of infection was evaluated on the serum samples from these subjects (twenty-six vaccinated individuals and twenty-one PCR-positive SARS-CoV-2-infected patients) using an in vitro model with CD16- or CD89-expressing cells and the Delta (B.1.617.2 lineage) and Omicron (B.1.1.529 lineage) variants of SARS-CoV-2. Sera from COVID-19 patients did not show ADE of infection with any of the tested viral variants. Some serum samples from vaccinated individuals displayed a mild IgA-ADE effect with Omicron after the second dose of the vaccine, but this effect was abolished after the completion of the full vaccination scheme. In this study, FcγRIIIa- and FcαRI-dependent ADE of SARS-CoV-2 infection after prior immunization, which might increase the risk of severe disease in a second natural infection, was not observed.

2.
J Clin Immunol ; 2022 Aug 25.
Article in English | MEDLINE | ID: covidwho-2246099

ABSTRACT

Reliable immunoassays are essential to early predict and monitor vaccine efficacy against SARS-CoV-2. The performance of an Interferon Gamma Release Assay (IGRA, QuantiFERON® SARS-CoV-2), and a current anti-spike serological test, compared to a plaque reduction neutralization test (PRNT) taken as gold standard were compared. Eighty vaccinated individuals, whose 16% had a previous history of COVID-19, were included in a longitudinal prospective study and sampled before and two to four weeks after each dose of vaccine. In non-infected patients, 2 doses were required for obtaining both positive IGRA and PRNT assays, while serology was positive after one dose. Each dose of vaccine significantly increased the humoral and cellular response. By contrast, convalescent subjects needed a single dose of vaccine to be positive on all 3 tests. Both IGRA and current serology assay were found predictive of a positive titer of neutralizing antibodies that is correlated with vaccine protection. Patients over 65 or 80 years old had a significantly reduced response. The response tended to be better with the heterologous scheme (vs. homologous) and with the mRNA-1273 vaccine (vs. BNT162b2) in the homologous group, in patients under 55 and under 65 years old, respectively. Finally, decrease intensity or absence of IGRA response and to a less extent of anti-spike serology were also correlated to reinfection which has occurred during the follow up. In conclusion, both IGRA and current anti-spike serology assays could be used at defined thresholds to monitor the vaccine response against SARS-CoV-2 and to simply identify non-responding individuals after a complete vaccination scheme. Two available specific tests (IGRA and anti-spike antibodies) could early assess the vaccine-induced immunity against SARS-CoV-2 at the individual scale, to potentially adapt the vaccination scheme in non-responder patients.

3.
EBioMedicine ; 80: 104077, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1867076

ABSTRACT

BACKGROUND: Severe COVID-19 is associated with a high circulating level of calprotectin, the S100A8/S100A9 alarmin heterodimer. Baseline calprotectin amount measured in peripheral blood at diagnosis correlates with disease severity. The optimal use of this biomarker along COVID-19 course remains to be delineated. METHODS: We focused on patients with a WHO-defined moderate COVID-19 requiring hospitalization in a medical ward. We collected plasma and serum from three independent cohorts (N = 626 patients) and measured calprotectin amount at admission. We performed longitudinal measures of calprotectin in 457 of these patients (1461 samples) and used a joint latent class mixture model in which classes were defined by age, body mass index and comorbidities to identify calprotectin trajectories predicting the risk of transfer into an intensive care unit or death. FINDINGS: After adjustment for age, sex, body mass index and comorbidities, the predictive value of baseline calprotectin in patients with moderate COVID19 could be refined by serial monitoring of the biomarker. We discriminated three calprotectin trajectories associated with low, moderate, and high risk of poor outcome, and we designed an algorithm available as online software (https://calpla.gustaveroussy.fr:8443/) to monitor the probability of a poor outcome in individual patients with moderate COVID-19. INTERPRETATION: These results emphasize the clinical interest of serial monitoring of calprotectin amount in the peripheral blood to anticipate the risk of poor outcomes in patients with moderate COVID-19 hospitalized in a standard care unit. FUNDING: The study received support (research grants) from ThermoFisher immunodiagnostics (France) and Gustave Roussy Foundation.


Subject(s)
COVID-19 , Leukocyte L1 Antigen Complex , Biomarkers/blood , COVID-19/blood , COVID-19/diagnosis , Humans , Leukocyte L1 Antigen Complex/blood , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL